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Abstract. The low-energy dynamics of the vortices of the Abelian Chern–Simons–Higgs system is inves-
tigated from the adiabatic approach. The difficulties involved in treating the field evolution as motion on
the vortex moduli space in this system are shown. Another two generalized Abelian Higgs systems are
discussed with respect to their vortex dynamics at the adiabatic limit. The method works well, and we
find bound states in the first model and scattering at right angles in the second system.

1 Introduction

Since their discovery by Nielsen and Olesen [1], the vortex
solutions present in the Abelian Higgs (AH) model have
been used in a variety of contexts beyond their original
purpose as vehicles of the strong forces. They have been
found useful, for example, in describing cosmic strings;
also, because the energy of static configurations in the
AH model can be interpreted as the free energy of the
Ginzburg–Landau theory for superconducting materials,
these topological solutions correspond to the magnetic
flux tubes appearing in type II superconductors. The spec-
trum of potentially relevant vortices in condensed-matter
physics has recently been broadened by the discovery of
a new class of outstanding cousins of the AH model so-
lutions: the topological and non-topological solitons aris-
ing in several Chern–Simons–Higgs (CSH) gauge systems.
The need to include a Chern–Simons term in the treat-
ment of three-dimensional gauge theories was first advo-
cated by Jackiw and Templeton [2], who were studying
the radiative corrections to spinorial electrodynamics. The
most remarkable effects of this term are the generation
of a topological photon mass compatible with gauge in-
variance [2,3], and the statistical transmutation of parti-
cles coupled to the gauge field [4]. The Higgs mechanism
in Maxwell–Chern–Simons electrodynamics was first in-
vestigated in [5], but although there are vortices in this
system, they are not self-dual [6]. The simplest way of
achieving a self-dual limit is to renounce the Maxwell term
and use the effective long-wavelength model introduced in
[7,8]. Self-duality with the Maxwell term is also possible,
but then supplementary scalar fields become necessary [9].
The CSH vortices could provide a theoretical model for de-
scribing physically distinguished objects such as Laughlin
quasiparticles or quasiholes [10] and the vortices of the still
poorly understood high-Tc superconductors [11]. For this
reason, any insight into their interactions and dynamical
properties is of interest.

The non-linear nature of field equations having soliton-
like solutions makes it almost impossible to study the
dynamics of topological defects in full detail. A brilliant
idea from Manton [12] allows in some cases an analyt-
ical approach to the problem: He showed that the low-
energy scattering of Bogonolny-Prasad-Sommerfeld (BPS)
monopoles can be traced back to geodesic motion in the
moduli space of these self-dual solutions for fixed mag-
netic charge. The method has been generalized by Manton
himself and others according to the following scheme: The
adiabatic limit in the dynamics of topological defects is
given by a Lagrangian system describing the motion of a
particle in the moduli space of self-dual solutions Mn. The
mechanical kinetic energy comes from the terms which are
quadratic in time derivatives of the field theory action.
Linear terms in time derivatives of the fields lead to a lin-
ear term in the velocity in the mechanical Lagrangian, in-
ducing a Lorentz force. Finally, the static part of the field
theoretical energy produces the mechanical potential en-
ergy. With this procedure, the adiabatic method fixes the
geometric structure of the moduli space Mn: the zeroth,
first- and second-order terms in time derivatives entering
in the field theory action respectively supply the definition
of the manifold Mn itself, its complex structure, and its
metric. This way of proceeding has been successfully ap-
plied in a variety of models; there are, for example, some
works on the AH model, both at the self-dual point [13,14]
or away from it [15], that lead to second-order dynamics
without a Lorentz term, but Manton has also shown [16]
how the same vortices can be embodied in a theory that
has purely first-order dynamics.

The adiabatic method has also been applied to the
analysis of the scattering of CSH vortices in [17]. In this
system, the approach runs into difficulties, and the reasons
why the method fails are pointed out in the same work.
Regarding this problem, we realize that the same mod-
uli space of self-dual vortices can be part of different field
theories, as Manton discovered for the Nielsen–Olesen vor-
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tices at critical coupling. We shall therefore start from a
fixed moduli space, Mn, of topological vortices and search
for “simple” Lagrangians such that the points of Mn will
be absolute minima of the field energy. Here we take the
simplicity requirement as having the most natural dynam-
ics, i.e., that associated with Manton’s approach. We shall
see that the simultaneous existence of first- and second-
order time-derivative terms, as it occurs in CSH models,
leads to a complex dynamical system on the moduli space,
and that difficulties appear in a complete analytical treat-
ment. In this paper, however, we shall study two gener-
alized Abelian Higgs models that share the same mod-
uli space of vortices with the CSH system. The first of
the models is non-relativistic, and first-order vortex dy-
namics arises, captured at the adiabatic limit. The other
model is relativistic, and the vortices evolve according
to second-order dynamics. Comparison with the applica-
tion of the adiabatic method to the CSH system helps to
clarify the origin of the problems found in this model.
In our analysis we find a universal kind of behaviour:
The low-energy dynamics of topological CSH vortices in
the non-relativistic model resembles the adiabatic limit of
the Ginzburg–Landau theory proposed in [16]. Topolog-
ical vortices in the generalized AH model scatter at low
energies as do Nielsen–Olesen vortices in the AH model.
When first- and second-order dynamics are entangled, the
adiabatic limit becomes very cumbersome. The rest of the
paper is organized as follows. In the next section, the CSH
vortices are introduced, the issue of low-energy dynamics
is addressed and its difficulties made clear. This is based
on previous work performed in [18] and [17]. The next
two sections are devoted to studying two alternative dy-
namics for the same vortices: new first- and second-order
vortex dynamics, as arise in a non-relativistic model and
a relativistic one, respectively, are discussed. Some further
comments and brief general conclusions are offered in the
last section.

2 The adiabatic limit
and CSH vortex dynamics

2.1 The moduli space of vortices in the CSH model

The action of the Abelian Chern–Simons–Higgs gauge sys-
tem is [7,8]

S =
∫

d3x

{
κ

4
εαβγAαFβγ +

1
2
Dµφ

∗Dµφ

−λ

8
|φ|2(|φ|2 − v2)2

}
(1)

where the space-time is three-dimensional, the metric is
gµν = diag(1,−1,−1), and the covariant derivative is
Dµφ = ∂µφ + ieAµφ. The Lagrangian is quasi-invariant
against the gauge transformations

φ → eieΛφ, Aµ → Aµ − ∂µΛ. (2)

Bearing in mind that

κ

4
εµνρAµFνρ =

κ

2
εklȦkAl + κA0F12 + divergence,

D0φ
∗D0φ = (∂0|φ|)2 + |φ|2(eA0 + ∂0 arg(φ)), (3)

and eliminating A0 by means of the Gauss law coming
from (1),

A0 = −κF12

|φ|2 − 1
e
∂0 arg(φ), (4)

the action separates into kinetic and potential parts as
follows:

S =
∫

dt{T − V } (5)

T =
∫

d2x

{
1
2
ϕ̇2 +

κ

2
εklȦkAl − κ

2e
Θ̇F12

}
(6)

V =
∫

d2x

{
1
2
κ2

eϕ2F
2
12 +

1
2
Dkφ

∗Dkφ+
λ

8
ϕ2(ϕ2 − 1)2

}
(7)

where φ = ϕeiΘ/2. Passing to the Hamiltonian formalism,
we find

H =
∫

dt{K + V } (8)

with
K =

1
2

∫
d2xϕ̇2. (9)

We shall first focus on static configurations. For these,
L = −V , H = V and the finiteness of the energy requires
φ(~x) → 0 or v when |~x| → ∞. In this paper, we limit
ourselves to the second case, i.e., we will work on the con-
figuration space

C = {Γ ≡ (φ,Ak)/Γ̇ = 0, E[Γ ] < ∞, φ||~x|→∞ = v}. (10)

Each configuration in C gives rise to a map from the
boundary of the plane at infinity to the gauge group,
φ∞ : S1

∞ → U(1) and is therefore associated with an
integer, the winding number n of φ∞. As a consequence,
C = ∪n∈ZCn and a topological superselection rule arises:
Time evolution cannot change the initial winding num-
ber. Furthermore, because Dkφ must vanish at infinity,
the magnetic flux of the configurations in Cn is given by
ΦM ≡ − ∫

d2xF12 = 2πn/e.
Our interest lies in the solutions belonging to Cn, which

are topological n-vortices. Although the theory also in-
cludes another class of very interesting non-topological
solutions with a vanishing asymptotic scalar field, there
is evidence that such non-topological solutions can be un-
derstood as assemblies of vortices mixed with some basic
non-topological defects [19]. Hence, the dynamics of this
kind of solution only differs from that of the topological
vortices in the effect of the vortex-defect interaction, an
issue to be dealt with elsewhere. In order to render V
extremal in C, the Bogomolnyi trick is useful:

V =
∫

d2x

{
1
2

[
κF12

eϕ
∓ e2

2κ
ϕ(ϕ2 − v2)

]2
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+
1
2
|D1φ± iD2φ|2

+
1
8

(
λ− e4

κ2

)
ϕ2(ϕ2 − v2)2

}
± ev2

2
ΦM . (11)

There is a critical point at λ = e4/κ2 where the contri-
bution of the third term vanishes and a global lower bound
to the energy arises: V ≥ πv2|n| for any configuration in
Cn. The bound is saturated if and only if the first order
equations

eF12 = ±m2

2
ϕ2

v2

(
ϕ2

v2 − 1
)

(12)

D1φ ± iD2φ = 0, (13)

where m = e2v2/κ, are satisfied; solutions of (12, 13)
are also solutions of the Euler–Lagrange equations. We
see that by replacing the Maxwell term with the Chern–
Simons term, self-duality requires a potential of sixth or-
der in the modulus of the Higgs field. Below we fix the
upper sign in these equations and work on Cn with n > 0;
the opposite choice would lead to analogous antivortices
with n < 0.

Using the Poincaré ∂̄ lemma, it is possible to prove
that the Higgs field of the non-singular solutions of (13)
has exactly n zeros, and that away from them, the phase
Θ is regular [20,21]. Furthermore, near a zero ~q of order
r, the field behaviour is

ϕ ' c|~x− ~q|r Θ ' 2rθ(~x− ~q) (14)

θ(~x) being the polar angle of ~x. The self-duality equations
over R2 − {~q1, ~q2, . . . , ~qn} are

∇2u = m2eu(eu − 1) (15)

eAk = −1
2
(∂kΘ + εkj∂ju) (16)

with u = ln(ϕ/v)2. Observe that with respect to the cor-
responding equations in the AH model, there is an addi-
tional factor, eu, on the right-hand side of equation (15).
The manifold of solutions of (12) and (13) on Cn, modulo
the group of gauge diffeomorphisms, is the n-vortex mod-
uli space Mn. As proven by Wang [20], Mn is the smooth
manifold of unordered n-points in C: Mn = Cn/Σn,
where Σn is the symmetric group of n! elements. This is
so because the n zeros of φ in C ' R2 determine a unique
solution, up to permutation and gauge equivalence. A sys-
tem of “good” coordinates in Mn is provided by the coeffi-
cients of the complex monic polynomial of degree n whose
roots are the zeros of φ: P (z) = z+a1z

n−1 + ...+an, with
P (za) = φ(za) = 0 for za = q1a + iq2a, a = 1, 2, ..., n. Had
we chosen the centres of the vortices za as a system of co-
ordinates in Mn, singularities would have appeared when
two zeros coincided. From a physical viewpoint, the struc-
ture of Mn shows that at the self-dual limit, the scalar
attractive force and the gauge repulsive force compensate
each other mutually, hence the static self-dual solutions
consist of systems of non-interacting vortices.

2.2 The dynamics of slowly moving vortices

We now address the issue of the time evolution of a self-
dual system of vorticity n. Because the time-dependent
field equations are too difficult to solve, it is necessary to
restrict the problem in such a way that an approximate
treatment is feasible. The most natural restriction is to
limit ourselves to the case of very slowly evolving fields
so that we can address the problem with Manton’s adia-
batic method: The point is that the solutions Γ [~x, t] with
Γ̇ small essentially describe the motion of the individual
vortices. We can thus identify Γ [~x, t] with a curve {~qa(t)}
in Mn, i.e.,

Γ (~x; t) = Γ (~x; ~qa(t)), Γ̇ (~x; t) =
∂Γ (~x; ~qa(t))

∂qk
a

q̇k
a . (17)

The field-theoretical problem is transmuted to a 2n-
dimensional mechanical one; introduction of (17) into (5)
and integration to the whole plane afford a Lagrangian
L = T (~qa, ~̇qa) − V (~qa) whose variational equations admit
as a solution the curve {~qa(t)} in Mn that corresponds
to some given initial conditions. In fact, on the moduli
space, V (~qa) = πnv2 and the only important term of L is
the kinetic one.

To carry out this program, the first step is to unequiv-
ocally fix the form of Γ [~x; ~qa] i.e, to fix the gauge by defin-
ing Θ(~x; ~qa) locally on the moduli. This gauge fixing must
be done in such a way that the kinetic energy will be in-
variant, not only against the group G of gauge diffeomor-
phisms but also against the enlarged group G̃ of moduli-
dependent gauge transformations; the dynamics cannot
vary if we choose different gauges in different points of the
moduli. However, despite this strong requirement, in the
CSH model there is no restriction on our freedom to choose
Θ(~x; ~qa); the only requisite is to respect the boundary con-
ditions in {~x = ~qa} and S1

∞. The reason for this is that (6)
is invariant against moduli-dependent gauge transforma-
tions because this expression was obtained from formula
(1) merely by imposing the gauge-independent Gauss law
(4). Hence, we can fix the gauge in the simplest form com-
patible with the boundary conditions

Θ(~x; ~qa) = 2
n∑

a=1

θ(~x− ~qa), (18)

i.e, by extending the known behaviour near the centers of
the vortices to the whole plane. Introduction of (18) into
(16) gives

eAk(~x; ~qa) = εkj∂jξ(~x; ~qa) (19)

where

ξ(~x; ~qa) = −1
2
u(~x; ~qa) +

n∑
a=1

ln |~x− ~qa|; (20)

Therefore, ξ is regular on the whole R2, see (14). Using
(19) and computing its time derivative, we obtain

εklȦkAl = ∂j(ξ̇Aj) − ξ̇(∂jAj) (21)
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Because the vector field of the vortices is transverse, the
second term in (6) is a global divergence and can be
dropped. The third term in the kinetic energy can be writ-
ten in the form

1
2
Θ̇F12 = εijεkl∂kAl

n∑
b=1

q̇i
b∂j ln |~x− ~qb|, (22)

using (18). This expression is regular across the entire
plane because F12 vanishes at the center of the vortices.
Proceeding by partial differentials, one can see that, be-
sides an irrelevant divergence,

1
2
Θ̇F12 = 2π

n∑
b=1

Ai(~x)q̇i
bδ(~x− ~qb) . (23)

Following [14], we expand the modulus of the Higgs field
near the bth vortex, in the form

1
2
u(~x; ~qa)|~x'~qb

= ln |~x− ~qb| + ab +~bb · (~x− ~qb) + . . . ; (24)

where ab,~bb are functions of the ~q; then the value of the
vector field at the center of that vortex is

eAk(~qb; ~qa) = εkj


∑

a6=b

qj
b − qj

a

|~qb − ~qa|2 − bjb


 (25)

for any solution of the vortex equations.
Substitution of (25) into formula (23) produces a term

in the kinetic energy (6) that involves only the ~q and their
time derivatives. Unfortunately, it is not possible to obtain
an explicit expression for the remaining quadratic term in
closed form, because integration to the whole plane re-
quires detailed knowledge of ϕ(~x; ~qa) as a function of ~x,
and not only in the vicinity of each vortex. Because the
exact solution of the system in (12) and (13) is unknown,
the best thing that we can do is to write the mechanical
Lagrangian in the form

L =
1
2

n∑
a,b=1

gab
ij q̇

i
aq̇

j
b − 2πκ

e

n∑
b=1

q̇k
bAk(~qb; ~qa) − πv2n (26)

with Ak given by (25) and

gab
ij =

∫
d2x

∂ϕ

∂qi
a

∂ϕ

∂qj
b

. (27)

The only possibility for integrating (27) to obtain an
analytic expression for the metric is to consider the asymp-
totic regimes of either very close or very separated vor-
tices. We now analyze the second case, in which the scalar
field around each vortex is approximately radially sym-
metric, i.e., the ~b are vanishingly small. This behaviour
and the great distance among vortices guarantee that the
vector field at the centers is negligible (see (25)), and that
the dynamics is governed by the quadratic term in T . Be-
cause ϕ tends to v exponentially when |~x − ~q| goes to
infinity, it makes sense to write

ϕ(~x) =

{
ϕ1(|~ya|) if |~ya| < Rv

v if |~ya| > Rv
(28)

where ~ya = ~x−~qa, ϕ1 is the magnitude of the Higgs field of
the radially symmetric 1-vortex, and Rv its characteristic
radius, i.e., the radius of the circle in which ϕ1 differs
appreciably from v. It is then easy to see that

gab
ij = δab

∫
d2y

yiyj

r2

(
dϕ1

dr

)2

, (29)

with r = |~y|, or

gab
ij = δabδijM, M =

1
2

∫
d2y

(
dϕ1

dr

)2

. (30)

Plugging the radial form of equation (13) into this expres-
sion,

dϕ1

dr
=

1 + eAθ

r
ϕ1, (31)

we find
M = −e

4

∫
d2xϕ2

1F12. (32)

But ϕ2
1 < v2, so we conclude that M < πv2/2. This is an

inconsistent answer, implying that the inertia of each vor-
tex is less than half its mass, which for the case n = 1 leads
to a conflict with relativistic invariance. This strongly sug-
gests that the adiabatic approach fails in the CSH model
and needs to be improved. The critical analysis of the adi-
abatic method in the current model, carried out by Dziar-
maga [17], reveals the reason for the failure. We review
this analysis in the next subsection.

2.3 The improved adiabatic limit

Consider a general field theory with a field multiplet (ψa)
and a Lagrangian

L = Gab[ψ]ψ̇aψ̇b +Ka[ψ]ψ̇a − H[ψ] (33)

where there are no time derivatives inside the brackets. As-
sume that the static solutions of the field equations form a
moduli space M. V =

∫
dnxH[ψ] takes the same constant

value on each point of M. Let {λA} be a local system of
coordinates in M and let ϕa(~x;λA) denote the fields cor-
responding to the solution {λA}. At Manton’s adiabatic
limit, slow time evolution merely amounts to motion in
the moduli space. Thus, time dependence is due exclu-
sively to variations in the {λA} coordinates as functions
of time,

ψ̇a =
∂ϕa

∂λA
λ̇A, (34)

hence, the effective Lagrangian

LManton
eff = Gab[ϕ]

∂ϕa

∂λA

∂ϕb

∂λB
λ̇Aλ̇B +Ka[ϕ]

∂ϕa

∂λA
λ̇A − H[ϕ].

(35)
is obtained. However, the true solutions of the time-
dependent Euler–Lagrange equations are configurations
ψa(~x, t) 6= ϕa(~x;λA(t)). In principle, one could improve
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the adiabatic approach, even without knowledge of the ex-
act solutions of the time-dependent non-linear field equa-
tions, by the inclusion of a linear term in λ̇A,

ψa(~x, t) = ϕa(~x;λA(t)) + φB
a (~x;λA(t))λ̇B(t), (36)

that accounts for the deformation of the static fields as a
result of the motion. (34) now becomes

ψ̇a(~x, t) =
∂ϕa

∂λA
λ̇A + φA

a λ̈A +
∂φB

a

∂λA
λ̇Aλ̇B , (37)

and the introduction of (36) and (37) into (33) gives a
very complicated expression,

Leff = L(2)
eff + L(1)

eff , (38)

where
L(1)

eff = Ka[ϕ]ϕ̇a, and (39)

L(2)
eff = Gab[ϕ](ϕ̇aϕ̇b + 2ϕ̇a∆̇b + ∆̇a∆̇b)

+
δKa

δψb
(ϕ̇a∆b − ϕ̇b∆a − ∆̇b∆a)

−1
2

δ2H
δψaδψb

∆a∆b, (40)

with

∆a = φB
a λ̇B , ∆̇a = φA

a λ̈A +
∂φB

a

∂λA
λ̇Aλ̇B . (41)

The question is whether or not this modification, which we
shall call the improved adiabatic limit, has any physical
meaning. There are three different cases:

A. Assume that both Gab and Ka are different from zero.
Because ϕ̇a is linear in λA, L(1)

eff is linear in the ve-
locities and all the terms entering in L(2)

eff are at least
quadratic. Integration over the whole plane of Leff =
L(2)

eff + L(1)
eff leads to a reduced mechanical Lagrangian

taking the form

Leff = gAB(λ)λ̇Aλ̇B + hA(λ)λ̇A, (42)

which describes the motion on the moduli space M.
Because the energy is constant on M, the static forces
between vortices are null, i.e., λ̈A = ωAB(λ)λ̇B +o(λ̇2);
the acceleration is zero if the velocity is zero. Because
of the linear term in Leff , ωAB(λ) is not zero; hence ∆a

and ∆̇a are of the same order. Therefore, the quadratic
term in the velocities in LManton

eff should be replaced by
L(2)

eff , hence one should consider the improved adiabatic
limit. This is exactly the case in the CSH system:

Gabψ̇aψ̇b =
1
2
ϕ̇2, Ka[ψ]ψ̇a =

κ

2
εklȦkAl − κ

2e
Θ̇F12.

(43)
The dynamics of the CSH vortices at the improved adi-
abatic limit is governed by the mechanical Lagrangian

Leff , where gAB and hA are derived from Leff = L(2)
eff +

L(1)
eff . This is a very difficult problem; first, it is not pos-

sible to give a closed expression for the metric gAB(λ)
because it depends not only on the vortex motion in
the moduli space, but also includes effects coming from
the field deformations whose specifications are beyond
self-duality, and this makes the use of the Euler-
Lagrange equations unavoidable. Moreover, there are
Lorentz forces due to hA(λ) that would strongly dis-
turb the possible geodesic motion in the metric gAB .

B. Let us next consider the case where Gab is not zero,
but Ka is zero. The mechanical Lagrangian is now

Leff = gAB(λ)λ̇Aλ̇B (44)

and ωAB(λ) = 0. Then, λ̈A = −ΓABC(λ)λ̇Bλ̇C and
L(2)

eff = LManton
eff , up to quadratic order in the veloci-

ties. The remaining terms in L(2)
eff are at least cubic in

λ̇A. This statement is obvious for the terms in the first
line of formula (40), but we now need the field equa-
tions derived from (33) to check that δ2H/δψaδψb is
indeed proportional to λ̇A at slow velocities. Thus, the
modification induced by formula (36) is negligible, and
the adiabatic limit is tantamount to geodesic motion
in the moduli space. The Abelian Higgs model obeys
this situation, with

Gabψ̇aψ̇b =
1
2
(φ̇∗φ̇+ ȦiȦi), (45)

and the low-energy dynamics of vortices becomes a
workable mechanical problem. In Sect. 4 we shall dis-
cuss a generalized Abelian Higgs model that also be-
longs to this type.

C. Finally, let us consider the opposite situation: Gab is
zero, but Ka is not null. The key point is that, in this
case, LManton

eff is linear in velocities and we do not need
to consider the corrections induced in L(2)

eff by deforma-
tions of the fields, because they are at least of second
order in λ̇A. The low-energy dynamics is again cap-
tured by the adiabatic limit, which now consists of
a mechanical problem on the configuration space M
with Lagrangian

Leff = hA[λ]λ̇A, (46)

causing motion on the moduli space that is due exclu-
sively to Lorentz forces. The non-relativistic Ginzburg-
Landau system analyzed in [16] belongs to this type:

Ka[ψ]ψ̇a = i(φ∗φ̇−φφ̇∗)+
κ

2
εklȦkAl − κ

2e
Θ̇F12. (47)

A generalization of this model in the same class will
be studied in the next section.

The conclusion is that the usual adiabatic approach is suit-
able for studying slow motion dynamics when the system
is purely linear or quadratic in the time derivatives of the
fields, but not when there are terms of both types simul-
taneously. In this case, the approach needs to be refined,
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and this leads to an exceedingly complicated problem that
does not admit any analytical treatment [17].

∗ ∗ ∗
To close this section we briefly discuss the issue of vor-

tex CSH statistics, a rather paradoxical subject [18]. For
a topological CSH vortex at rest, we have:

ΦM =
2π
e
, Q = −2πκ

e
, J = −πκ

e2
. (48)

If we trust the standard computation of the statistical
angle of two-dimensional anyons through the Aharonov–
Bohm (AB) effect, we find that the CSH vortices corre-
spond to a statistic ν = 2πκ/e2 and the spin-statistics
relation is ν = −2s; there is a minus sign with respect
to the expected outcome. Nevertheless, in the adiabatic
mechanical Lagrangian (26), the term

Lstat = −2πκ
e2

εkj

∑
b

q̇k
b

∑
a<b

qj
b − qj

a

|~qa − ~qb|2 (49)

= +
2πκ
e2

∑
a<b

d
dt

arg(~qa − ~qb) (50)

should be interpreted as providing anyonic statistics for a
statistical angle ν = −2πκ/e2 = 2s, see [22]. We find the
right answer at the adiabatic limit, whereas application of
the AB method to extended distributions of electric and
magnetic charge fails.

3 The non-relativistic linear model

The paradigm of linear gauge theory in the time deriva-
tives is the non-relativistic model of Jackiw and Pi [23],
which describes the minimal coupling between the non-
linear Schrödinger matter field and the Chern–Simons
gauge field in (2 + 1) dimensions. Although this model
contains self-dual vortices, these are quite different from
that considered in the previous section. In the Jackiw–
Pi (JP) theory one has only the symmetric phase, con-
structed on the unique vacuum φ = 0, and the vortices are
non-topological even if the magnetic flux is an integer. In
fact, the JP model is the non-relativistic limit of the CSH
system, and the JP vortices are the corresponding limit
of the non-topological CSH vortices; the topological vor-
tices disappear from the spectrum in the non-relativistic
regime, and the flux quantization is due to the inversion
properties of the Liouville equation rather than to topo-
logical reasons (the JP model enjoys conformal invariance
and the vortex equations become equivalent to the Li-
ouville equation). As we shall see, to have true self-dual
topological vortices, the original JP theory must be mod-
ified with care.

3.1 The generalized Ginzburg–Landau theory

We shall now discuss a non-relativistic model with both
symmetric and asymmetric phases. The new system is a

generalization of the model analyzed by Manton in [12];
the crucial difference is that the moduli space of topologi-
cal vortices is now the same as in the CSH theory, instead
of being the moduli space of Ginzburg–Landau vortices.
Of course, we shall find first-order vortex dynamics rather
than the awkward situation of the CSH model. Before this,
however, we must deal with the tricky question of mak-
ing non-relativistic dynamics compatible with the spon-
taneous symmetry breakdown of U(1) invariance. Even
though it is possible to build a non-symmetric vacuum in
the JP theory, the fields cannot reach it asymptotically
because that would lead to pathologies, namely, infinite
charges and a misdefinition of the canonical formalism.
Barashenkov and Harin [24] traced the origin of the prob-
lem back to the underlying pure scalar model in 1+1 di-
mensions and found that a possible loophole is to multiply
the φ̇ term of the Lagrangian by a factor of 1 − (|φ|2/v2).
To determine this factor, they used the condition that the
Euler–Lagrange equations of the modified scalar model
must coincide with those of the original one. However,
since the theory is to be gauged, this is perhaps too restic-
tive a requirement. Instead, one can consider a more gen-
eral version of the non-linear Schrödinger Lagrangian in
1+1 dimensions of the form

L =
i
2
H(ϕ)[φ∗∂0φ− φ∂0φ

∗] − ∂xφ
∗∂xφ− U(ϕ) (51)

where U is a potential that includes an asymmetric vac-
uum of modulus v. From (51) we obtain the conserved
current

ρ = ϕ2H(ϕ), jx = −i(φ∗∂xφ− φ∂xφ
∗), (52)

and the field momentum

P =
i
2

∫
dxH(ϕ)[φ∗∂xφ− φ∂xφ

∗] (53)

whose variation is given by

δP = i
∫

dx{[H∂xφ− ∂x(Hφ)]δφ∗

−[H∂xφ
∗ − ∂x(Hφ∗)]δφ}

+
i
2

∫
dx{∂x[Hφ∗δφ−Hφδφ∗]

+
dH
dϕ2 [φδφ∗ + φ∗δφ]}. (54)

The difficulties emphasized in [24] are twofold: If φ(±∞) =
veiχ± and H(ϕ) = 1, the charge Q =

∫
dxρ diverges, and

the momentum variation includes a term v2[δχ+ − δχ−]
that cannot be differentiated with respect to δφ or δφ∗,
and therefore the canonical formalism is perturbed. How-
ever, it suffices to introduce any H(ϕ) such that H(v) = 0
to avoid both problems: δP will then be well defined, and
Q will be finite and will vanish for all vacua.

We now turn to the gauge theory and propose the fol-
lowing modified Jackiw–Pi model
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S =
∫

d3x

{
i
2
H(ϕ)[φ∗D0φ− φD0φ

∗]

+
κ

4
εαβγAαFβγ

−1
4
G(ϕ)FijFij − 1

2
Dkφ

∗Dkφ

− λκ2

8e2G(ϕ)
(ϕ2 − v2)2

}
(55)

where we follow Manton’s clever idea [16] of taking ad-
vantage of the Galilean invariance in order to include an
asymmetric Maxwell term without any contribution from
the electric field. Nevertheless, we avoid use of external
couplings to maintain the gauge invariance of the theory
explicitly. Furthermore, we use a dielectric function G(ϕ)
to build up a non-minimal interaction between the scalar
and gauge fields, as is done in [25]. Below, we shall treat
this issue more generally, but for the time being, we set

G(ϕ) =
κ2

e2ϕ2 . (56)

Apart from the above motives, there is another reason
for including the function H(ϕ) in the Lagrangian. It has
recently been shown in [26] that the effective theory for
the low-energy interaction between a planar relativistic
fermionic gas and a crystalline background leads to a
Chern–Simons–Higgs model in which the term in the co-
variant derivatives is multiplied by a functionH; this func-
tion is fixed by self-duality and supersymmetry criteria. In
a non-relativistic situation, it is not necessary to use the
same function for temporal and spatial derivatives, so in
(55) we have chosen H = 1 for the spatial derivatives. As
we shall see, in a vorticial arena, |H| < 1, so including this
function as a factor in only the temporal term favours a
small deformation of the vortices in their low-energy mo-
tion.

Among the Euler–Lagrange equations from (55) we
find the Gauss law

κF12 − eϕ2H(ϕ) = 0 (57)

whose form is exactly as in (4), κF12 − eρ = 0; therefore
(55) and (1) give rise to the same anyonic statistics [22]. To
split (55) into kinetic and potential parts, it is convenient
to adopt the temporal gauge A0 = 0. Then

S =
∫

dt(T − V ), (58)

T =
∫

d2x

{
i
2
H(ϕ)(φ∗φ̇− φφ̇∗) +

κ

2
εklȦkAl

}
, (59)

and V coincides with (7). Because A0 is not present in
(58), the Gauss law (57) must be imposed as a constraint
on the field equations arising from (58).

We now turn to studying the static limit of the theory.
Given that V is the same as in the CSH model, the whole
analysis of the static part of that model is still valid in our
non-relativistic theory: At the self-dual limit λ = e4/κ2,

the solutions of equations (12) and (13) are extrema of
the action (55), and in the Cn sector, have V = πv2n, and
form the moduli space Mn with local coordinates {~qa}
corresponding to the positions of the zeros of φ. In this
system too, the self-dual solutions are absolute minima of
V . The specific forms of U(ϕ) and G(ϕ) force the function
H(ϕ) to be chosen as

H(ϕ) =
e2

2κ
(ϕ2 − v2) (60)

in order to make the Gauss law (57) compatible with the
vortex equations (12) and (13). It is remarkable that an
identical choice of H(ϕ) allows one to extend the gener-
alization of the CSH system studied in [26] to an N = 2
SUSY theory.

3.2 First-order vortex dynamics

Introduction of H(ϕ) into (59) and use of the Gauss law
give

T =
∫

d2x
{κ

2
εklȦkAl − κ

2e
Θ̇F12

}
, (61)

i.e., on the moduli space, T is equal to the sum of the
terms linear in time derivatives appearing in formula (6).
This guarantees the gauge invariance of (61). Additionally,
if we work in the gauge Θ(~x; ~qa) = 2

∑n
a=1 θ(~x − ~qa) in

particular, then the Manton approach, after the algebra
already seen for the CSH model, leads to

L = −2πκ
e

n∑
b=1

q̇k
bAk(~qb; ~qa) − V (~qa) (62)

where of course Ak(~qb; ~qa) is given by (25). Because (62)
is linear in the time derivatives, the adiabatic limit is
now completely satisfactory; there are no terms containing
time derivatives in the field equations that become unim-
portant when time goes to ∞ at different rates (see [27] for
a conceptual analysis of this situation). In order to obtain
non-trivial dynamics, we must consider the “almost” self-
dual regime [15,16], i.e., we take λ = (e4/κ2) + µ, µ ' 0
and hence the vortices are subject to small static forces:
In (62), V (~qa) = nπv2 + µW (~qa), where

W (~qa) =
1
8

∫
d2xϕ2(~x; ~qa)[ϕ2(~x; ~qa) − v2]2. (63)

Even though the precise expression of W cannot be found
analytically, it is obvious from (11) that if µ > 0, the en-
ergy of an assembly of several vortices increases, and if
µ < 0, it decreases; when this is compared with the self-
dual case, it leads to the assumption that forces among
vortices are repulsive for µ > 0 (attractive for µ < 0)
and therefore that W (~qa) is smaller for larger intervor-
tex distances, a conjecture that is supported by numerical
computations [28] and theoretical arguments [21]. To ap-
preciate the features of the dynamics derived from (62) it
is convenient to analyze the n = 2 case in some detail.
We fix the center of mass of the system to be the origin of
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coordinates, ~Q = (1/2)(~q1+~q2) = 0, and work with the rel-
ative coordinate ~q = (1/2)(~q1 − ~q2). Notice that ~b1 = −~b2.
To check this property, it suffices to recall that vortex in-
distinguishability requires that ϕ(−~q+~y; ~qa) = ϕ(~q−~y; ~qa)
and to use (24). Furthemore, because the system has to
be symmetric with respect to parity transformations and
rotations around the center of masses,

~b1 = −~b2 =
1
2
b(q)~q (64)

Introducing (64) into (62), we find

L = −2πκ
e2

[
1
q2

− b(q)
]
εkj q̇

kqj − µW (q). (65)

In terms of the polar angle θ = θ(~q),

L =
2πκ
e2

[1 − q2b(q)]θ̇ − µW (q) (66)

and the dynamical equations are

q̇ = 0

θ̇ = − µe2

2πκ
dW/dq

2qb(q) + q2db/dq
(67)

(b(q) is not equal to 1/q2, as we will discuss later). Hence,
the vortices move in circular orbits with constant angular
speed. The magnitude of the angular speed is a function
of the orbit radius, and the sense of movement is opposite
for type I and type II superconductors.

To finish this subsection, we note that although we
have fixed G(ϕ) in (56) to make the moduli space of the
model fit in with that of the CSH one, a similar treatment
can be carried out for general G(ϕ). The only difference
is that expression (60) must be substituted with

H(ϕ) =
κ

2ϕ2

ϕ2 − v2

G(ϕ)
, (68)

and that the self-duality equations are not (12) and (13)
but rather a generalization that is to be addressed in the
next section. Nevertheless, (61) and the subsequent results
remain valid. All the vortices of the complete family of
generalized non-relativistic models (55) have exactly the
same first-order dynamics.

3.3 The effect of a charged background

All the generalized non-relativistic models governed by the
action (55) can be modified by adding a charged constant
background

SB = e

∫
d3xv2A0(~x, t), (69)

which leads to a new Gauss law

κF12 = −e(v2 + ϕ2H(ϕ)), (70)

that renders the system self-dual at the static limit if λ =
e4/κ2. The potential energy and Bogomolnyi equations
in this system are (86) and (92, 93), respectively, as we
shall see in the next section. The first-order equations for
a general choice of G(ϕ) are compatible with (70) if and
only if H is chosen in the form:

H(ϕ) =
v2

ϕ2

[
κ

2G(ϕ)

(
1 − ϕ2

v2

)
− 1

]
. (71)

The price to be paid is a different choice of H. For in-
stance, the model discussed by Manton in [16] corresponds
to G(ϕ) = κ/2 and H(ϕ) = −1. The generalization of the
system proposed in Sect. 3 obeys:

G(ϕ) =
κ2

e2ϕ2 , H(ϕ) =
e2

2κ
(v2 − ϕ2) − v2

κ2 , (72)

to be compared with formulas (56) and (57). Using the
Gauss law (70) we see that the kinetic energy becomes:

T =
∫

d2x
{κ
e
Θ̇F12 − κ

2
εklȦkAl + v2Θ̇

}
. (73)

There is a new term with respect to the kinetic energy
in the absence of the charged background, see (61), but
before analyzing the physics arising from it, it is conve-
nient to compare the developments of Sect. 3 with the
parallel study in [16]. If we look at our choice of gauge
Θ = 2

∑n
a=1 θ(~x − ~qa) near the center of each vortex

~x = ~qb + ~ε, and take the limit |~ε| → 0, we find:

lim
ε→0

Θ(~x;~ε) = 2 lim
ε→0

∑
a6=b

θ(~qb +~ε− ~qa) + 2 lim
ε→0

θ(~qb +~ε− ~qb).

(74)
Solving the ambiguity by defining θb = limε→0 θ(~qb + ~ε −
~qb), we see that

Θ(~qb) = 2
∑
a6=b

θ(~qb − ~qa) + 2θb = 2ψb + 2θb, (75)

which is exactly the Manton choice of gauge. To see how
to glue these local choices, it suffices to look at the case of
two vortices. Near the center of the first vortex we have:

Θ(~x)~x→~q1 ' θ(~x− ~q1) + ψ1, Θ(~q2) = θ(~q2 − ~q1) + ψ1.
(76)

Around the second vortex, there are similar expressions:

Θ(~x)~x→~q2 ' θ(~x− ~q2) + ψ2, Θ(~q1) = θ(~q1 − ~q2) + ψ2.
(77)

But in M2, the two descriptions above are equivalent:
The impossibility of distinguishing the vortices requires
Θ(~q1) = Θ(~q2), and this identity determines the gluing by
setting θ(~q1 − ~q2) = ψ2 and θ(~q2 − ~q1) = ψ1.

Consequently, we have found the same first-order dy-
namics as Manton, a result which is independent of the
particular model under scrutiny. In systems that gener-
alize the model analyzed in Sect. 3, the kinetic energy
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includes the first two terms of (73), and the reduced La-
grangian is:

L = −2πκ
e

n∑
b=1

εkj


∑

a6=b

q̇k
b

qj
b − qj

a

|~qb − ~qa|2 − q̇k
b b

j
b




=
2πκ
e

n∑
b=1

dψb

dt
+

2πκ
e

n∑
b=1

εkjb
j
b(q)q̇

k
b . (78)

The other contribution in (73), which is due to the ex-
istence of a constant background, leads to the reduced
kinetic energy

T =
n∑

b=1

∫
Σ

dsdtĴb
kj [γ]

dqk
b

ds
∧ dqj

b

dt
=

n∑
b=1

∫
γ=∂Σ

dtâb
j [γ]

dqj
b

dt
(79)

for a motion in the n-vortex moduli space along a closed
path γ in Mn. Here,

Ĵb
kj [γ] =

∂âb
j

∂qk
b

− ∂âb
k

∂qj
b

, âb
j(~qb) = εjkq

b
k (80)

is the complex structure inherited from the field dynamics
by Mn at the adiabatic limit. The contribution of (79)
is therefore the area Σ enclosed by the loop γ in Mn.
Here we do not repeat Manton’s derivation of this because
there are no differences in the generalized models under
discussion. We observe, however, that the action of the
mechanical system is of the form

T =
n∑

b=1

{∫
γ

dtab
j [γ]

dqj
b

dt
+

2πκ
e

∫
γ

dt
dψb

dt

}
(81)

where

ab
j [γ] = âb

j [γ] +
2πκ
e
εjkb

k
b [γ]. (82)

4 The generalized Abelian Higgs model

4.1 Self-dual vortices in the generalized AH model

A solvable adiabatic dynamics on the moduli space of
vortices Mn also arises in the generalized Abelian Higgs
model where the field dynamics is governed by the action:

S =
∫

d3x

{
−1

4
G(ϕ)FµνF

µν +
1
2
Dµφ

∗Dµφ− U(ϕ)
}
.

(83)
The system is relativistic, quadratic in time derivatives
of the fields, and was proposed by Lee and Nam in [25].
Because G depends only on ϕ, gauge invariance is guaran-
teed. The model has been written in a generic form, with
G(ϕ) and U(ϕ) unspecified; we require only that both
functions be positive and definite. There are several phys-
ical situations in which this kind of model is interesting;
see [25].

To identify the kinetic and potential parts of (83), we
choose the temporal gauge and write the action in the
form

S =
∫

dt(T − V ), (84)

T =
1
2

∫
d2x{G(ϕ)ȦkȦk + φ̇∗φ̇}, (85)

V =
∫

d2x

{
1
2
G(ϕ)F 2

12 +
1
2
Dkφ

∗Dkφ− U(ϕ)
}
. (86)

Observe that the Abelian Higgs model corresponds to the
choice

G(ϕ) = 1, U(ϕ) =
λ

8
(ϕ2 − v2)2. (87)

The static energy V of the CSH model, however, is ob-
tained by choosing

G(ϕ) =
κ2

e2ϕ2 , U(ϕ) =
λ

8
ϕ2(ϕ2 − v2)2, (88)

but now the kinetic energy is different from the kinetic
energy of the CSH system; as a consequence, the Gauss
law derived from (83) as a constraint equation,

∂k[G(ϕ)F0k] − eIm(φDoφ
∗) = 0, (89)

also differs from the Chern–Simons Gauss law; the elec-
tric charge is not the source of the magnetic field, and
exotic statistics do not develop in this model. In any case,
a configuration space C = ∪n∈ZCn corresponds to every V
of the form (86), such that U gives rise to an asymmet-
ric vacuum. Each field configuration in Cn has quantized
magnetic flux: eΦM = 2πn. Furthermore, given any G(ϕ)
there exists a potential U that allows for self-duality equa-
tions [25]; one immediately sees that

U(ϕ) =
λκ2

8e2G(ϕ)
(ϕ2 − v2)2 (90)

produces the Bogomolny splitting

V =
∫

d2x


1

2

[√
G(ϕ)F12 ∓ e

2
√
G(ϕ)

(ϕ2 − v2)

]2

+|D1φ± iD2φ|2+
+

1
8

(
λκ2

e2 − e2
)

(ϕ2 − v2)2

G(ϕ)

}
± ev2

2
ΦM. (91)

At the critical point λ = e4/κ2, the bound is saturated by
the solutions of the self-duality equations

eF12 = ± e2v2

2G(ϕ)

(
ϕ2

v2 − 1
)

(92)

D1φ ± iD2φ = 0 (93)

that have energy V = πv2n if they belong to Cn.
As in the CSH model, the Higgs field corresponding

to self-dual solutions has n zeros at the points ~qa in the
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plane, and from (93), one sees that φ behaves near these
zeros as in the vortex solutions of the CSH model. Away
from the zeros, the equations with the upper sign take the
form

∇2u =
e2v2

G(u)
(eu − 1), (94)

eAk = −1
2
(∂kΘ + εkj∂ju). (95)

The vortex solutions of (92) and (93) are the Nielsen–
Olesen (NO) vortices if we take option (87), or the Jackiw–
Lee–Weinberg (JLW) vortices, if (88) is preferred. We em-
phasize that the same vortex equations and identical mod-
uli spaces of solutions are shared by different physical sys-
tems; the physical nature and properties of the vortices
depend crucially on the model. For instance, the NO vor-
tices are neutral in the AH system, but electrically charged
in the Ginzburg–Landau theory of [16]. By the same token,
JLW vortices have electric charge in the CSH system and
are neutral in the generalized AH model under discussion.
Henceforth, we expect different adiabatic dynamics on the
moduli space, depending on the system in question. How-
ever, we can trust the hypothesis that the moduli spaces
of solutions of (92) and (93) are isomorphic for different
G(ϕ), because the local treatment of the moduli by means
of index theorem techniques is insensitive to the form of
G(ϕ); see [29] or [7]. In the rest of the paper we shall ad-
mit that the zeros ~qa of the Higgs field parametrize the
moduli space of solutions of (92)–(93).

4.2 Second-order vortex dynamics:
comparison with the AH model

In order to study the dynamics on Mn, we start by fix-
ing the gauge, i.e, by choosing the phase Θ(~x; ~qa). The
choice cannot be arbitrary; because we are working in the
temporal gauge, the Gauss law

∂k(GȦk) +
1
2
ev2euΘ̇ = 0 (96)

must be maintained to ensure the invariance of (85) under
gauge transformations with parameter Λ(~x; ~qa) varying on
the moduli space. This is the main difference from the
Chern–Simons theories; in this case there is no freedom to
choose Θ in R2 × Mn. The Gauss law and the boundary
conditions at the centers of the vortices and at infinity fix
the gauge completely: Setting Ȧk → δAk ≡ Ak(~x; ~qa +
δ~qa) − Ak(~x; ~qa) and using (95), we obtain from (96) the
differential equation

dG
du

∂ku[∂kδΘ + εkj∂jδu] +G∇2δΘ = e2v2euδΘ, (97)

which, together with the linearization of (94),

G(u)∇2δu+
dG
du

∇2uδu = e2v2euδu, (98)

locally determines Γ (~x; ~qa) near each point of Mn and
allows one to compute u̇ and Θ̇ in terms of the ~̇qa in a
definite way:

u̇(~x; ~qa) =
∂u(~x; ~qa)
∂qk

b

q̇k
b (99)

Θ̇(~x; ~qa) =
∂Θ(~x; ~qa)
∂qk

b

q̇k
b (100)

All the time derivatives in (84) can be expressed in terms
of u̇ and Θ̇. Because both quantities are singular at the
vortex centers, it is convenient to integrate over R̃2 =
R2 − ∪a4a if 4a is an infinitesimal disk surrounding the
ath vortex. Given that even for the case G(ϕ) ∝ ϕ−k, k >
1, as happens for the CSH vortices, the integrand is regular
everywhere (near anm-vortex G ' r−mk with r = |~x−~qa|;
but from linearization of (92), one has Ȧk ' rkm−m+1,
hence GȦkȦk ' rmk−2m+1), eliminating these disks from
the integration domain has a negligible effect on T . Now,

GȦkȦk = − 1
2e
GȦk(∂kΘ̇ + εkj∂j u̇) (101)

φ̇∗φ̇ =
v2

4
eu(u̇2 + Θ̇2), (102)

and from the first equation, we have

GȦkȦk = − 1
2e
∂k[GΘ̇Ȧk + εjkGu̇Ȧj ]

+
Θ̇

2e
∂k(GȦk) − u̇

2e
GḞ12 +

u̇Ȧj

2e
εjk∂kG.(103)

However, using (96) and (92), we have

Θ̇

2e
∂k(GȦk) = −v2

4
euΘ̇2 (104)

u̇

2e
GḞ12 =

v2

4
euu̇2 − u̇Ġ

2e
F12, (105)

so that the final expression for the kinetic energy is

T =
1
2

∫
R̃2

d2x

{
− 1

2e
∂k[GΘ̇Ȧk + εjkGu̇Ȧj ]

+
u̇

2e
[Ȧjεjk∂kG− ĠF12]

}
. (106)

Note that the AH model is special: In this case, T reduces
to a contour integral and can therefore be given in terms
of data localized at the center of each vortex [14]. In all
other cases it is necessary to integrate over all R̃2, which
cannot be accomplished without analytical knowledge of
the vorticial fields.

There is still another aspect with respect to which the
AH model is special: It is the only model of the type (83)
whose kinetic energy is associated with a Kähler metric
on Mn. This can be seen following the method explained
in [14]. To address this point, it is convenient to replace
our vectorial notation by the standard complex one: z =
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x1+ix2, za = q1a+iq2a and a = A1−iA2.The kinetic energy
is of the form

T =
1
2
gzazb

żażb + gzaz∗
b
żaż

∗
b +

1
2
gz∗

az∗
b
ż∗
aż

∗
b . (107)

As we already mentioned, due to (85), g cannot be ex-
pressed in closed form except in the AH model. In any
case, Mn has a natural complex structure:

J : TMn → TMn

{ża} → {iża}. (108)

On the other hand, from (95) and the exponential expres-
sion for φ, it is easy to see that

φ̇ = φη (109)
eȧ = i∂zη

∗ (110)

where η = 1/2(u̇ + iΘ̇), hence TMn can be identified
with the space of η deformations. Although the complete
determination of η corresponding to some given ża is not
possible, we are at least able to write it as

η = −
n∑

a=1

żaβa(z, z∗; za, z
∗
a) (111)

where

βa(z, z∗; za, z
∗
a) ' 1

z − za
=

1
|~x− ~qa|e

−iθ(~x−~qa) (112)

for z very close to za. To do this, we have used only the
linearity of (97) and (98) and the regularity of φ̇ on all
R2. To prove that the coefficients in (111) are precisely
ża, it is enough to solve φ+ tφ̇ = 0. It follows from (111)
that the complex structure (108) is equivalent to

Jη = iη. (113)

Now, from (85), the metric on Mn can be recast as

g(η1, η2) =
1
4

∫
d2x{G(ϕ)[ȧ∗

1ȧ2 + ȧ∗
2ȧ1] + φ̇∗

1φ̇2 + φ̇∗
2φ̇1},
(114)

where both ȧr and φ̇r come from ηr by using (109, 110).
Clearly g is hermitian, g(Jη1, Jη2) = g(η1, η2), and its
Kähler form ω(η1, η2) = g(Jη1, η2) is

ω =
i
4

∫
d2x{G(ϕ)da∗ ∧ da− dφ∗ ∧ dφ}. (115)

It is easy to compute the exterior derivative of ω,

dω =
i
4

∫
d2x

{
1
2
ϕ

dG
dϕ

[dη + dη∗] ∧ da∗ ∧ da
}

(116)

because dφ = φdη is an element in ΛMn. Therefore, ω is
closed only if G is constant, i.e., for the AH model.

4.3 Vortex scattering: comparison with the CSH model

From formula (106), we have seen the difficulty involved
in finding an exact closed expression for T when G is not
a constant. If the vortices are close enough, however, it
is possible to obtain a picture of the scattering that is
essentially correct. In the case of n = 2, the space of the
polynomials P2(z) = (z − z1)(z − z2) = z2 + a1z + a2
is isomorphic to M2. Notice that z1, z2 are the vortex
centers, and M2 is the set of unordered pairs of points in
the plane; given (a1, a2), we have either (z1 = z+, z2 = z−)
or (z1 = z−, z2 = z+), where z± = (a1 ±

√
a2
1 − 4a2)/2.

In the center-of-mass system, (a1 = 0, a2 = w) implies
PR

2 (z) = (z − √
w)(z +

√
w). The motion is symmetric

around the CM , and, when w → 0, the two vortices tend
to overlap at the origin. Reciprocally, we can use (109) to
express the scalar field of a system of two neighbouring
vortices as

φ(z, z∗; t) = φ(2)(z, z∗) − w(t)φ(2)(z, z∗)β(z, z∗). (117)

where w, ẇ are small, φ(2) is the radial 2-vortex solution,
and β, accounting for the splitting of the two vortices,
behaves as β ' 1/z2 near z ' 0 (see (112)). Hence, we
see that φ(z, z∗; t) = 0 has the symmetric roots z1(t) =√
w(t), z2(t) = −√

w(t) around the origin, fitting with
the above description in terms of PR

2 (z). From (117),

φ̇ = −ẇφ(2)β, (118)

and by comparison with (109) and (110), we know that

eȧ = iẇ∂zβ
∗ (119)

hence the kinetic energy is

T =
1
2
|ẇ|2

∫
d2x

{
G

e
|∂zβ

∗|2 + |φ(2)β|2
}

≡ 1
2
M |ẇ|2,

(120)
where M is given in terms of the fields of the radial 2-
vortex and the deformation β coming from (97) and (98).
The form of (120) as a function of the relative coordinate
zr(t) =

√
w(t) is

T = 2M |zr|2|żr|2. (121)

However, to study the movement of non-distant vortices,
it is more convenient to use (120) directly. Because (120)
is the kinetic energy of a free particle in the w-plane, the
radial trajectories crossing the origin are solutions of the
dynamics. Nevertheless, in view of the equation zr(t) =√
w(t), we find the correspondence shown in Fig. 1, and

the celebrated 90◦ scattering appears as a generic feature
of the models (83). Note that written in terms of the w
variable, which is the good coordinate in the moduli space,
the metric is flat near the point where the two vortices
overlap, showing that the manifold M2 is smooth at this
point and that the conical singularity suggested by (121)
is only an artifact of the wrong relative coordinate having
been chosen. In fact, we do not expect that the abrupt
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Fig. 1. Scattering of a system of two vortices, as seen from
thesquared relative coordinate and from the true relative co-
ordinate planes

change in direction shown in Fig. 1 actually occurs, the
reason being that (120) is an asymptotic expression valid
only for very small intervortex distances. In a realistic
scattering, the initial separation between the two vortices
is enough to bring the subdominant contributions not in-
cluded in (120) into play. These in turn give rise to inter-
actions that produce the smooth bending of the trajectory
and the situation depicted in Fig. 1 is reached only asymp-
totically.

It is interesting at this point to study the vortex motion
under these conditions in the CSH system, where the term

L(1) = −2πκ
e2

[
1
q2

− b(q)
]
εkj q̇

kqj (122)

leads to a slightly modified kinetic energy [30],

T =
m

2
|zr|2|żr|2 +

2πκ
e2

c|zr|4θ̇r (123)

where θr = arg zr, m = 2
∫

dx2|φ(2)β|2 and b(q) ' (1/q2)
+cq2. The expansion of the deformation factor b(q) in-
duced by the interaction with the other vortices around
the point q = 0 differs in the CSH system from that of the
AH model. An indirect argument suggests that the tedious
computation leading to such a result is correct. Unlike in
the case of the Ginzburg–Landau vortices, b(q) − (1/q2)
cannot be constant at q = 0 in the CSH model, because of
the nature of the Higgs potential ruling the interactions.
Again, the w-coordinate is better suited to describing the
vortex motion, and we find

T =
µ

2
(|ẇ|2 + |w|2χ̇2) + γ|w|2χ̇, (124)

where µ = m/8, γ = πκc/e2 and w = |w|eiχ. Although
there is a term causing 90◦ scattering, the new linear term

in χ̇, however, completely modifies this behaviour. An in-
trinsic angular momentum is induced by this term

J =
∂T

∂χ̇
= µ|ω|2χ̇+ γ|ω|2, (125)

and is a constant of motion; J̇ = 0 because ∂T/∂χ = 0.
The energy of this mechanical system is

H =
1
2
µ|ω̇|2 +

(J2 − γ|ω|2)2
2µ|ω|2 , (126)

which is equivalent to an isotropic harmonic oscillator.
Choosing the constant of motion as J = j, we have

H =
1
2
µ|ω̇|2 +

j2

2µ|ω|2 +
γ2|ω|2

2µ
− jγ

µ
. (127)

All the trajectories are thus ellipses, and the motion cor-
responds to bound states of two vortices orbiting around
each other. This is consistent with what was discussed in
Sect. 2, that the inertia of a CSH-vortex is smaller than
its mass: The vortices are trapped, forming bound states
as a result of the first-order dynamics. In fact, modifica-
tions due to higher-order terms in the expansion of b(q), to
be taken into account at larger intervortex distances, do
not alter this picture. The energy and angular momentum
would in this case be:

H =
1
2
µ|ω̇|2 +

(J2 − h(|ω|)2
2µ|ω|2 , (128)

J = µ|ω|2χ̇+ h(|ω|) (129)

where h(|ω|) is a power series in |ω|2. From Ḣ = J̇ = 0,
one reads the motion equations:

µ|ω̈|− 1
µ|ω|3 (J−h(|ω|)(J−h(|ω|)+ |ω|h′(|ω|)) = 0 (130)

µ|ω|χ̈+ 2µ|ω̇|χ̇+
h′(|ω|)|ω̇|

|ω| = 0. (131)

Circular trajectories, |ω| = a, occur if j = h(a) − ah′(a)
with angular velocity: χ̇ = −h′(a)/2aµ. Vortex-bound
states do not arise only at short distances.

5 Conclusions and outlook

The application of the Manton approach to the low-speed
dynamics of the topological vortices in the CSH model
is too involved to allow a successful analytical treatment.
Nevertheless, we have shown that it is possible to build
two different kinds of self-dual generalized Abelian Higgs
systems with solvable slow vorticial dynamics, and whose
parameters can eventually be adjusted to obtain exactly
the CSH moduli space. Remarkably enough, despite im-
portant differences in their field profiles, the qualitative
dynamical behavior of the vortices in each class of gener-
alized systems is not particularly model-dependent, but
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generic: All the possible non-relativistic first-order sys-
tems give rise to a uniform circular motion of the vortices
around the barycenter, and for all the relativistic second-
order ones, the head-on collision of two defects leads to
right-angle scattering. It is believed that the dynamics of
the original CSH vortices results from some entanglement
of these two effects. A few final words on quantization.
For the quadratic model of Sect. 4, the transition from
classical to quantum mechanics is straightforward: The
Laplace–Beltrami operator corresponding to the metric
on the moduli space becomes the quantum Hamiltonian,
replacing the classical kinetic energy as generator of the
dynamics. In the linear model of Sect. 3 things are more
interesting (less standard), especially when the charged
background is incorporated. Observe that (81) is no more
than topological classical mechanics associated with the
space of paths in Mn; see [31]. The quantization is almost
trivial when Mn is topologically trivial. The Hilbert space
reduces to the ground state, which is degenerated; e.g., if
bkb [γ] = 0, it would be the first Landau level. If vortices
move in a compact space, a two-sphere for instance, things
become more difficult, and one would need to consider the
Floer homology of the symplectic compact manifold Mn

[32].
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